Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism.
نویسندگان
چکیده
Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2(-/-)) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female-predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2(-/-) female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease.
منابع مشابه
A review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)
Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...
متن کاملAntiproliferative Role of Dopamine: Loss of D2 Receptors Causes Hormonal Dysfunction and Pituitary Hyperplasia
The function of dopamine (DA) in the nervous system is paralleled by its neuroendocrine control of pituitary gland functions. Here, we document the neuroendocrine function of dopamine by studying the pituitary gland of mice lacking DA D2 receptors (D2R). These mice present a striking, progressive increase in lactotroph number, which ultimately leads to tumors in aged animals. Females develop tu...
متن کاملImportance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland.
The effects of the thiol group reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) on D2 dopamine receptors have been examined in three brain regions (caudate nucleus, putamen and olfactory tubercle), and in the anterior and neurointermediate lobes of the pituitary gland. Whereas the receptors in brain were insensitive to DTNB, a dose-dependent inhibition of [3H]spiperone binding to D2 receptor...
متن کاملCentral dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males.
Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Altho...
متن کاملThe Blockade of D1/D2-Like Dopamine Receptors within the Dentate Gyrus of Hippocampus Decreased the Reinstatement of Morphine-Extinguished Conditioned Place Preference in Rats
Introduction: The hippocampus (HIP), the primary brain structure related to learning and memory, receives sparse but comprehensive dopamine innervations and contains dopamine D1/D2-like receptors. It is demonstrated that dopamine receptors in dentate gyrus (DG) region of HIP have a remarkable function in spatial reward processing. Much less is known about the involvement of HIP and its D1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 156 3 شماره
صفحات -
تاریخ انتشار 2015